Structure of Trimethylamine, $\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{9}} \mathbf{N}$, at 118 K

By Alexander J. Blake, E. A. V. Ebsworth and Alan J. Welch
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 19 August 1983; accepted 24 October 1983)

Abstract

M_{r}=59.1, \quad P \overline{3}, \quad a=6.1366\) (29), $\quad c=$ $6.8516(28) \AA, \quad U=223.5(3) \AA^{3}, \quad Z=2, \quad D_{x}=$ $0.878 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \bar{\lambda}=0.71069 \AA, \quad \mu=$ $0.058 \mathrm{~mm}^{-1}, F(000)=68, R=0.0559$ for 384 reflections. The structure consists of discrete molecules arranged head-to-tail in columns which run alternately parallel and antiparallel to the c crystallographic axis. Individual molecules have effective $C_{3 v}$ symmetry, with a pyramidal geometry at $\mathrm{N}\left[\mathrm{C}-\mathrm{N}-\mathrm{C}=110.40(7)^{\circ}\right]$, and the $\mathrm{C}-\mathrm{N}$ bond length is 1.4535 (11) \AA. The conformation about the $\mathrm{C}-\mathrm{N}$ bond is such that the symmetry-unique H atom is anti to the N lone pair of electrons.

Introduction. Although the crystal structures of adducts of trimethylamine with iodine (Strømme, 1959), iodine chloride (Hassel \& Hope, 1960), and sulphur dioxide (van der Helm, Childs \& Christian, 1969), as well as the $10.25 \mathrm{H}_{2} \mathrm{O}$ clathrate (Panke, 1968), have been known for several years, molecular parameters were not accurately determined. Moreover, no solid-state structure of NMe_{3} itself has been published, although a gas-phase electron diffraction study (Beagley \& Hewitt, 1968), and a microwave determination (Wollrab \& Laurie, 1969) have been reported.

As part of continuing work in this Department on low-melting inorganic compounds, we are engaged in study of members of the homologous series $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3-x^{-}}$ $\left(\mathrm{SiH}_{3}\right)_{x}(x=0-3)$ (Barrow \& Ebsworth, 1984; Blake, Ebsworth \& Welch, 1984). Apart, therefore, from its intrinsic interest, the accurate crystal structure of trimethylamine serves as a basis for comparisons with the silylamines of this series.

Experimental. Colourless, cylindrical crystal, $0.05 \times$ $0.04 \times 0.04 \mathrm{~cm}$, grown in situ on low-temperatureequipped Weissenberg goniometer from sample sealed in Pyrex capillary. Space group identified by combination of oscillation and Weissenberg photography, E statistics, and successful refinement. Crystal transferred without melting as described previously (Blake, Cradock, Ebsworth, Rankin \& Welch, 1984) to similarly equipped CAD-4 diffractometer, $118 \mathrm{~K}, 25$ reflections ($13<\theta<15^{\circ}$) centred, graphite-monochromated Mo $K \alpha$ radiation. For data collection $\theta_{\text {max }}$
$=30^{\circ}, \omega-2 \theta$ scan in 96 steps, ω-scan width ($0 \cdot 8+$ $0.35 \tan \theta)^{\circ}$. Rapid prescan after which reflections with $I \geq 0.5 \sigma(I)$ remeasured such that final net intensity had $I>33 \sigma(I)$ subject to maximum measuring time of 90 s . No significant crystal decay or movement. 440 unique reflections over 26 X-ray hours. No absorption correction. For structure solution and refinement 384 amplitudes $[F \geq 2.0 \sigma(F)]$. Automatic centrosymmetric direct methods (Sheldrick, 1976). Full-matrix leastsquares $(F), w^{-1}=\left[\sigma^{2}(F)+0.002064(F)^{2}\right]$, anisotropic thermal parameters for C and N , isotropic for H , $R \quad 0.0559$, $w R$ 0.0681, data:variable ratio 15:1. $(\Delta / \sigma)_{\text {max }}$ in final cycle $<0 \cdot 03$. Max. peak and min. trough in final ΔF synthesis 0.43 and $-0.25 \mathrm{e}^{\AA^{-3}}$ respectively. No correction for secondary extinction. Neutral-atom scattering factors for C and N (Cromer \& Liberman, 1970) and H (Stewart, Davidson \& Simpson, 1965). Computer programs SHELX76 (Sheldrick, 1976). XANADU (Roberts \& Sheldrick, 1976), XRAY76 (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976) and ORTEPII (Johnson, 1976).

Discussion. Table 1 lists derived fractional coordinates and thermal parameters.* Fig. 1 is a projection of a single molecule in a direction normal to the crystallographically imposed C_{3} molecular axis, and clearly demonstrates that the effective molecular symmetry is C_{30}. Within this symmetry there are two possible molecular conformations, corresponding to syn and anti orientations of the unique H atoms relative to the N lone pair of electrons. The former would be severely crowded intramolecularly, and the determined structure clearly has the latter stereochemistry. Table 2 lists interatomic separations and interbond angles. Trimethylamine crystallizes head-to-tail in loosely packed (as evidenced by the relative U_{11} and U_{33} values) columns running alternately parallel and antiparallel to the c crystallographic axis, as shown in Fig. 2 (deposited).

The structure of trimethylamine in the crystal is very similar to that determined in the vapour phase by

[^0]electron diffraction (ED) (Beagley \& Hewitt, 1968), and by microwave spectroscopy (MW) (Wollrab \& Laurie, 1969), not only in terms of $C_{3 v}$ molecular symmetry and anti conformation, but also in respect of the specific molecular parameters $\mathbf{C}-\mathrm{N}[1.4535$ (11) (crystal); 1.455 (2) (ED); 1.451 (3) \AA (MW)] and $\mathrm{C}-\mathrm{N}-\mathrm{C} \quad[110.40$ (7) (crystal); 110.6 (6) (ED); $110.9(6)^{\circ}$ (MW)]. These observations are entirely consistent with the absence of any significant intermolecular contacts in the crystalline phase.

The largest residue in the ultimate ΔF synthesis is the major lobe of a $2 p_{z}-2 s$ hybrid orbital of the N atom, classically the ' N lone pair'. This residue, together with its minor-lobe component, is plotted in Fig. 3(a) with contours drawn at intervals of $0.085 \mathrm{e} \AA^{-3}$. Extended Hückel molecular-orbital (EHMO) calculations (Howell, Rossi, Wallace, Haraki \& Hoffmann, 1977), of the self-consistent charge and configuration type, have confirmed that this $2 p_{z}-2 s$ hybrid orbital is the major component of the highest occupied molecular orbital (HOMO) of NMe_{3}, Fig. 3(b). Trimethylamine, inter alia, has been the subject of recent MO calculations at both semi-empirical (MNDO) and ab initio levels (Livant, McKee \& Worley, 1983), but the results of these calculations were mainly addressed to the questions of planarity at N in the series $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3-x^{-}}$ $\left(\mathrm{SiH}_{3}\right)_{x}(x=0-3)$, and of matching theoretical MO levels to photoelectron spectra. We have employed the EHMO approach to probe intramolecular bonding.

Table 1. Positional (fractional coordinates) and thermal $\left(\AA^{2}\right)$ parameters with standard deviations
The anisotropic temperature factor is defined as $\exp \left[-2 \pi^{2}\left(U_{11} a^{* 2} h^{2}\right.\right.$ $\left.\left.+U_{22} b^{* 2} k^{2}+U_{33} c^{* 2} l^{2}+2 U_{23} b^{*} c^{*} k l+2 U_{13} a^{*} c^{*} h l+2 U_{12} a^{*} b^{*} h k\right)\right]$. The isotropic temperature factor is defined as $\exp \left[-8 \pi^{2} U\left(\sin ^{2} \theta\right)\right.$ / $\left.\lambda^{2}\right]$.

	x		y		z	
N	0.33333		0.66667		0.34010 (14)	
C	$0 \cdot 57546$ (15)		0.86815 (14)		$0 \cdot 27271$ (14)	
H(1)	$0 \cdot 600$ (3)		1.023 (3)		0.3212 (16)	
H(2)	0.5965 (24)		0.8768 (23)		0.1296 (17)	
H(3)	0.708 (3)		0.842 (3)		0.3193 (20)	
	U or U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
N	0.0133 (4)	0.0133	0.0341 (6)	0.0000	0.0000	0.0066
C	0.0176 (5)	0.0190 (5)	0.0471 (6)	$0 \cdot 0027$ (3)	0.0042 (3)	0.0061 (3)
H(1)	0.049 (3)					
H(2)	0.038 (3)					
H(3)	0.056 (3)					

Table 2. Interatomic distances (\AA) and interbond angles ${ }^{(}{ }^{\circ}$)

Primed atom generated by operation of the crystallographic threefold rotation axis.

$\mathrm{N}-\mathrm{C}$	$1.4535(11)$	$\mathrm{C}-\mathrm{H}(2)$	$0.987(14)$
$\mathrm{C}-\mathrm{H}(1)$	$0.946(17)$	$\mathrm{C}-\mathrm{H}(3)$	$0.961(17)$
$\mathrm{C}-\mathrm{N}-\mathrm{C}^{\prime}$	$110.40(7)$	$\mathrm{H}(1)-\mathrm{C}-\mathrm{H}(2)$	$110.1(13)$
$\mathrm{N}-\mathrm{C}-\mathrm{H}(1)$	$108.9(10)$	$\mathrm{H}(1)-\mathrm{C}-\mathrm{H}(3)$	$109.3(14)$
$\mathrm{N}-\mathrm{C}-\mathrm{H}(2)$	$114.3(8)$	$\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(3)$	$103.9(13)$
$\mathrm{N}-\mathrm{C}-\mathrm{H}(3)$	$110.1(10)$		

Fig. 1. Trimethylamine, with thermal ellipsoids drawn at the 50% electron probability level, except for \mathbf{H} atoms which have an artificial radius of $0 \cdot 1 \AA$ for clarity.

Fig. 3. (a) Experimental electron density contours of the N lone pair of trimethylamine. (b) The HOMO of NMe_{3}, as given by the extended Hückel method. The composition of this molecular orbital (only one asymmetric fraction of which is drawn here) is approximately $87 \% \psi \mathrm{~N} 2 p_{z}+2 \% \psi \mathrm{~N} 2 s+4 \% \psi \mathrm{H}(2) 1 s$.

The EHMO calculations, performed in strict $C_{3 v}$ symmetry with parameters specified in Table 3 (deposited), have reproduced the relative weakness of the $\mathrm{C}-\mathrm{H}(2)$ bond that is consistent with its crystallographically observed (albeit not statistically significant) relative lengthening; $\mathrm{C}-\mathrm{H}$ overlap populations are 0.796 to $\mathrm{H}(1,3)$ and 0.793 to $\mathrm{H}(2)$. Furthermore, larger $\mathrm{N} \cdots \mathrm{H}(2)$ than $\mathrm{N} \cdots \mathrm{H}(1,3)$ repulsive interactions (computed overlap populations -0.054 and -0.045 , respectively) account for the wider $\mathrm{N}-\mathrm{C}-\mathrm{H}(2)$ angle observed in the X-ray study. The origin of these repulsions derives largely from the form of the HOMO, and thus the outward displacement of $\mathrm{H}(2)$ atoms does not arise from simple $\mathrm{H}(2) \cdots \mathrm{H}\left(2^{\prime}\right)$ steric contact. This is apparent from both the crystallographic and the theoretical studies - from the former $\mathrm{H}(2) \cdots \mathrm{H}\left(2^{\prime}\right)$ is 2.562 (17) \AA, well outside the van der Waals sum, and from the latter the $H(2) \cdots H\left(2^{\prime}\right)$ overlap population is actually positive although very small (0.0014).

It is encouraging to note that both aspects of the asymmetry of the CH_{3} function are also observed in the microwave study (Wollrab \& Laurie, 1969).

We thank the SERC for support.

References

Barrow, M. J. \& Ebsworth, E. A. V. (1984). J. Chem. Soc. Dalton Trans. In the press.
Beagley, B. \& Hewitt, T. G. (1968). Trans. Faraday Soc. 64, 2565-2570.

Blake, A. J., Cradock, S., Ebsworth, E. A. V., Rankin, D. W. H. R. \& Welch, A. J. (1984). J. Chem. Soc. Dalton Trans. Submitted.
Blake, A. J., Ebsworth, E. A. V. \& Welch, A. J. (1984). Acta Cryst. B40. To be published.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Hassel, O. \& Hope, H. (1960). Acta Chem. Scand. 14, 391-397.
Howell, J., Rossi, A., Wallace, D., Haraki, K. \& Hoffmann, R. (1977). ICON8. Quantum Chemistry Program Exchange.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Livant, P., McKee, M. L. \& Worley, S. D. (1983). Inorg. Chem. 22, 895-901.
Panke, D. (1968). J. Chem. Phys. 48, 2990-2996.

Roberts, P. \& Sheldrick, G. M. (1976). XaNADU. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Strømme, K. O. (1959). Acta Chem. Scand. 13, 268-274.
Van der Helm, D., Childs, J. D. \& Christian, S. D. (1969). J. Chem. Soc. Chem. Commun. pp. 887-888.
Wollrab, J. E. \& Laurie, V. W. (1969). J. Chem. Phys. 51, 1580-1583.

Acta Cryst. (1984). C40, 415-416

Structure of trans-1,9-Dichloro-1,2,3,4,6,7,8,9-octahydrophenazine 5-Oxide, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$

By Z. Galdecki,* P. Grochulski and Z. Wawrzak
Institute of General Chemistry and Institute of Physics, Technical University of Łódź, Ż wirki 36, 90-924 Łódź, Poland

(Received 17 August 1983; accepted 19 September 1983)

Abstract

M_{r}=273.025\), monoclinic, $P 2_{1} / c, a=$ 6.155 (1),$\quad b=11.390$ (2), $\quad c=20.200$ (4) $\AA, \quad \beta=$ $119.85(3)^{\circ}, V=1228.25$ (1) $\AA^{3}, Z=4, D_{m}=1.479$, $D_{x}=1.487 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54 .18 \AA, \mu(\mathrm{Cu} K \alpha)$ $=3.15 \mathrm{~mm}^{-1}, F(000)=568$, room temperature. Final $R=0.039$ for 1671 reflections. The central ring is almost flat and both unsaturated six-membered rings exist in the crystal in half-chair conformations with both $\mathrm{C}-\mathrm{Cl}$ bonds lying in axial positions, in the trans configuration.

Introduction. 1,9-Dichloro-1,2,3,4,6,7,8,9-octahydrophenazine 5 -oxide was first obtained by Fischer \& Weitz (1975) as two isomers which were resolved by column chromatography on silica gel. The authors suggested that the compound with m.p. 443 K has the cis configuration and that with m.p. 439 K the trans configuration of Cl atoms. The compound was obtained again and resolved by thin-layer chromatography by Hahn, Muszkiet, Rybczyński \& Skrzypek (1983). One of the isomers has m.p. 447 K and the other decomposes in the temperature range 433-448 K with no clear melting point. This does not allow identification of the isomers and we have therefore investigated the crystal structures of both isomers to

* To whom correspondence should be addressed at the Institute of General Chemistry.

0108-2701/84/030415-02\$01.50
identify them. We first solved the structure of the isomer having no clear melting point.

Experimental. Recrystallization from ethanol, D_{m} by flotation, thin colourless single-crystal fragments $\sim 0.4 \times 0.4 \times 0.1 \mathrm{~mm}$, Syntex $P 2_{1}$ diffractometer, graphite-monochromatized $\mathrm{Cu} K \alpha$ radiation, $\theta-2 \theta$ scan, unit-cell parameters refined from accurately measured 2θ values of 25 high-angle reflections, Lp and empirical absorption corrections (transmission 0.159 to $0.275), \sin \theta / \lambda \leq 0.546 \AA^{-1}, 1671$ reflections measured ($0 \leq h \leq 6,0 \leq k \leq 12,-22 \leq l \leq 19$), all unique, 1278 considered observed with $F_{o} \geq 2 \sigma\left(F_{o}\right)$; three standard reflections varied in intensity by $<3 \%$ throughout data collection. Direct methods [MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978)] revealed positions of all non-hydrogen atoms; refinement (on F) by full-matrix least squares with anisotropic temperature factors for non-hydrogen atoms, all H atoms located in difference Fourier synthesis and refined isotropically using mixed method, final R $=0.039, \quad R_{w}=0.042, S=1.53$ for the observed reflections, $w=1 / \sigma^{2},(\Delta / \sigma)_{\max }$ for non-H atoms $=0.38$ [U_{12} for $\left.\mathrm{C}(7)\right],(\Delta / \sigma)_{\mathrm{ave}}=0 \cdot 12$, final $\Delta \rho$ excursions $\leq 10.21 \mid \mathrm{e} \AA^{-3}$; atomic scattering factors from International Tables for X-ray Crystallography (1974) for neutral atoms, and anomalous-dispersion corrections for non-hydrogen atoms from Cromer \& Liberman (1970). All calculations except for MULTAN performed using XRAY76 (Stewart, 1976).
© 1984 International Union of Crystallography

[^0]: * Lists of structure factors, Fig. 2, and Table 3 have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38977 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

